Analysis and discretization to fractional derivative
problems with (hidden memory) variable order
摘 要:
We study variable-order fractional derivative problems with and without hidden memory. The well-posedness of the models and the smoothing properties of their solutions are proved, based on which the corresponding fully-discrete finite element methods are analyzed. Numerical experiments are carried out to substantiate the theoretical findings.
报告人:
郑祥成,北京大学数学科学学院博士后。2020年博士毕业于美国南卡罗来纳大学(U.SC)。主要从事(变阶)分数阶偏微分方程的理论与数值分析及相应的反问题、最优控制、快速算法和随机微分方程的研究。近两年在计算和应用数学顶级期刊SIAM J. Numer. Anal., IMA J. Numer. Anal., Inverse Problems, J. Inverse and Ill-posed problems, Comput. Meth. Appl. Mech. Engrg., Fract. Calc. Appl. Anal., J. Sci. Comput.等正式发表SCI论文33篇。先后获得国家奖学金,USC数学系杰出研究生奖,George W. Johnson应用数学奖学金等,并获USC SPARC Graduate Research Grant等基金资助。
时 间:2020年11月11日 周三上午10:00-11:00
腾讯会议:417 6381 8666
迎广大师生参加!
数学科学学院
2020年11月7日