学术报告--张在坤博士:A Continuous Optimization Model for Clustering
发布者: 张临杰
发布时间:2018-09-21
浏览次数:588

题  目:A Continuous Optimization Model for Clustering


主讲人:张在坤(博士) 香港理工大学应用数学系


摘  要:We study the problem of clustering a set of objects into groups according to a certain measure of similarity among the objects. This is one of the basic problems in data processing with various applications ranging from computer science to social analysis. We propose a new continuous model for this problem, the idea being to seek a balance between maximize-ing the number of clusters and minimizing the similarity among the objects from distinct clusters. Adopting the spectral clustering methodology, our model quantifies  the number of clusters via the rank of a graph Laplacian, and then  relaxes rank minimization to trace minimization with orthogonal constraints. We analyze the properties of our model, propose a block coordinate descent algorithm for it, and establish the global convergence of the algorithm. We then demonstrate our model and algorithm by several numerical examples.

  

时  间:2018年9月29日(星期六) 下午14:30-15:30
地  点:数学科学学院424室


欢迎广大师生参加!


数学科学学院     
2018年9月21日   

数学学院

姓            名:

学术报告--张在坤博士:A Continuous Optimization Model for Clustering

职            称:

邮            箱:

办     公     室:

办 公 室 电 话:

研  究  方  向:

题  目:A Continuous Optimization Model for Clustering


主讲人:张在坤(博士) 香港理工大学应用数学系


摘  要:We study the problem of clustering a set of objects into groups according to a certain measure of similarity among the objects. This is one of the basic problems in data processing with various applications ranging from computer science to social analysis. We propose a new continuous model for this problem, the idea being to seek a balance between maximize-ing the number of clusters and minimizing the similarity among the objects from distinct clusters. Adopting the spectral clustering methodology, our model quantifies  the number of clusters via the rank of a graph Laplacian, and then  relaxes rank minimization to trace minimization with orthogonal constraints. We analyze the properties of our model, propose a block coordinate descent algorithm for it, and establish the global convergence of the algorithm. We then demonstrate our model and algorithm by several numerical examples.

  

时  间:2018年9月29日(星期六) 下午14:30-15:30
地  点:数学科学学院424室


欢迎广大师生参加!


数学科学学院     
2018年9月21日   

地址:青岛市崂山区松岭路238号   
电话:0532-66787153
邮编:266100
版权所有©中国海洋大学     数学科学学院     鲁ICP备05002467号-1     鲁公网安备 37021202000030号

官方微信

.